## VI. Addition to the Memoir on Tschirnhausen's Transformation. By ARTHUR CAYLEY, F.R.S.

Received October 24,—Read December 7, 1866.

In the memoir "On Tschirnhausen's Transformation," Philosophical Transactions, vol. clii. (1862) pp. 561-568, I considered the case of a quartic equation: viz. it was shown that the equation

$$(a, b, c, d, e(x, 1)) = 0$$

is, by the substitution

$$y = (ax+b)B + (ax^2 + 4bx + 3c)C + (ax^3 + 4bx^2 + 6cx + 3d)D$$

transformed into

$$(1, 0, \mathbb{C}, \mathbb{B}, \mathbb{C}(y, 1)) = 0,$$

where (C, D, C) have certain given values. It was further remarked that (C, D, C) were expressible in terms of U', H',  $\Phi'$ , invariants of the two forms (a, b, c, d, e),  $(B, C, D)(Y, -X)^2$ , of I, J, the invariants of the first, and of  $\Theta'$ ,  $=BD-C^2$ , the invariant of the second of these two forms,—viz. that we have

And by means of these I obtained an expression for the quadrinvariant of the form

$$(1, 0, \mathbb{C}, \mathbb{D}, \mathbb{C}^{r}, y, 1)^{4};$$

viz. this was found to be

$$=IU'^{2}+\frac{4}{3}I^{2}\Theta'^{2}+12J\Theta'U'.$$

But I did not obtain an expression for the cubinvariant of the same function: such expression, it was remarked, would contain the square of the invariant  $\Phi'$ ; it was probable that there existed an identical equation,

$$JU^{1/3}-IU^{1/2}H'+4H'^3+M\Theta'=-\Phi'^2$$

which would serve to express  $\Phi'^2$  in terms of the other invariants; but, assuming that such an equation existed, the form of the factor M remained to be ascertained; and until this was done, the expression for the cubinvariant could not be obtained in its most simple form. I have recently verified the existence of the identical equation just referred to, and have obtained the expression for the factor M; and with the assistance of this identical equation I have obtained the expression for the cubinvariant of the form

$$(1, 0, \mathbb{C}, \mathbb{B}, \mathbb{C}(y, 1)^4.$$

MDCCCLXVI.

The expression for the quadrinvariant was, as already mentioned, given in the former memoir: I find that the two invariants are in fact the invariants of a certain linear function of U, H; viz. the linear function is  $=U'U+\frac{2}{3}\Theta'H$ ; so that, denoting by I\*, J\*, the quadrinvariant and the cubinvariant respectively of the form

we have

$$(1, 0, \mathbb{C}, \mathbb{D}, \mathbb{C} \mathcal{J} y, 1)^4,$$

$$I^* = \widetilde{I}(U'U + 4\Theta'H),$$

$$J^* = \widetilde{J}(U'U + 4\Theta'H),$$

where  $\tilde{I}$ ,  $\tilde{J}$  signify the functional operations of forming the two invariants respectively. The function  $(1, 0, \mathbb{C}, \mathbb{E}, \mathbb{C}(y, 1)^4)$ , obtained by the application of Tschirnhausen's transformation to the equation

$$(a, b, c, d, e)(x, 1)^4 = 0,$$

has thus the same invariants with the function

$$U'U + 4\Theta'H = U'(a, b, c, d, e)(x, 1)^4 + 4\Theta'(ac - b^2, ad - bc, ae + 2bd - 3c^2, be - cd, ce - d^2)(x, 1)^4$$

and it is consequently a linear transformation of the last-mentioned function; so that the application of Tschirnhausen's transformation to the equation U=0 gives an equation linearly transformable into, and thus virtually equivalent to, the equation

$$U'U+4\Theta'H=0,$$

which is an equation involving the single parameter  $\frac{4\Theta'}{U'}$ : this appears to me a result of considerable interest. It is to be remarked that Tschirnhausen's transformation, wherein y is put equal to a rational and integral function of the order n-1 (if n be the order of the equation in x), is not really less general than the transformation wherein y is put equal to any rational function  $\frac{V}{W}$  whatever of x; such rational function may, in fact, by means of the given equation in x, be reduced to a rational and integral function of the order n-1; hence in the present case, taking V, W to be respectively of the order n-1, =3, it follows that the equation in y obtained by the elimination of x from the equations

$$(a, b, c, d, e)(x, 1)^4 = 0,$$

$$y = \frac{(\alpha, \beta, \gamma, \delta)(x, 1)^3}{(\alpha', \beta', \gamma', \delta')(x, 1)^3}$$

is a mere linear transformation of the equation AU+BH=0, where A, B are functions (not as yet calculated) of  $(a, b, c, d, e, \alpha, \beta, \gamma, \delta, \alpha', \beta', \gamma', \delta')$ .

Article Nos. 1, 2, 3.—Investigation of the identical equation 
$$JU'^3-IU'^2H'+4H'^3+M\Theta'=-\Phi'^2$$
.

1. It is only necessary to show that we have such an equation, M being an invariant,

in the particular case a=e=1, b=d=0,  $c=\theta$ , that is for the quartic function  $(1, 0, \theta, 0, 1)(x, 1)$ ; for, this being so, the equation will be true in general. Writing the equation in the form

 $-M\Theta' = U'^2(JU' - IH') + 4H'^3 + \Phi'^2$ 

and observing that we have

$$U' = (B^{2} + D^{2}) + 2\theta BD + 4\theta C^{2},$$

$$H' = \theta(B^{2} + D^{2}) + (1 + \theta^{2})BD - 4\theta^{2}C^{2},$$

$$\Theta' = BD - C^{2},$$

$$\Phi' = (1 - 9\theta^{2})C(B^{2} - D^{2}),$$

$$I = 1 + 3\theta^{2},$$

$$J = \theta - \theta^{3},$$

and thence

$$JU'-IH'=-4\theta^3(B^2+D^2)+(-1-2\theta^2-5\theta^4)BD+(8\theta^2+8\theta^4)C^2$$

the equation becomes

$$-(BD-C^{2})M = \begin{cases} -4\theta^{3}(B^{2}+D^{2})+(-1-2\theta^{2}-5\theta^{4})BD+(8\theta^{2}+8\theta^{4})C^{2} \\ \times \{B^{2}+D^{2}+2\theta BD+4\theta C^{2}\}^{2} \\ +4\{\theta(B^{2}+D^{2})+(1+\theta^{2})BD-4\theta^{2}C^{2}\}^{3} \\ +(1-9\theta^{2})^{2}C^{2}\{(B^{2}+D^{2})^{2}-4B^{2}D^{2}\}. \end{cases}$$

2. It is found by developing that the right-hand side is in fact divisible by BD-C<sup>2</sup>, and that the quotient is

$$= (-1+10\theta^{2}-9\theta^{4})(B^{2}+D^{2})^{2}$$

$$+(8\theta+16\theta^{3}-24\theta^{5})(B^{2}+D^{2})BD$$

$$+(4+8\theta^{2}+4\theta^{4}-16\theta^{6})B^{2}D^{2}$$

$$+(-64\theta^{3}-192\theta^{5})(B^{2}+D^{2})C^{2}$$

$$+(16\theta^{2}-416\theta^{4}-112\theta^{6})BDC^{2}$$

$$+(-128\theta^{4}+128\theta^{6})C^{4}.$$

3. This is found to be

= 
$$-I^2U'^2 + 12JU'H' + 4IH'^2$$
  
-  $8IJU'\Theta'$   
-  $16J^2\Theta'^2$ .

which is consequently the value of -M. We have therefore

$$-\Phi'^{2} = JU'^{3} - IU'^{2}H' + 4H'^{3} + (I^{2}U'^{2} - 12JU'H' - 4IH'^{2})\Theta' + 8IJU'\Theta'^{2} + 16J^{2}\Theta'^{3},$$

which is the required identical equation.

Article No. 4.—Calculation of the Cubinvariant.

4. We have

$$J^* = \frac{1}{6} \mathbb{C} \cdot \mathbb{C} - (\frac{1}{6} \mathbb{C})^3 - (\frac{1}{4} \mathbb{D})^2$$

$$= (H - \frac{1}{3} I \Theta') \{ I U'^2 - 3 H'^2 + (12 J U' + 2 I H') \Theta' + I^2 \Theta'^2 \}$$

$$- (H - \frac{1}{3} I \Theta')^3$$

$$- \Phi'^2,$$

whence, substituting for  $-\Phi'^2$  its value and reducing, we find

$$J^* = JU'^3 + \Theta' \cdot \frac{2}{3}I^2U'^2 + \Theta'^2(4IJU') + \Theta'^3(16J^2 - \frac{8}{27}I^3)$$
.

Article No. 5.—Final expressions of the two Invariants.

The value of I\* has been already mentioned to be I\*=IU'<sup>2</sup>+ $\Theta'$ 12JU'+ $\Theta'$ <sup>2</sup>.  $\frac{4}{3}$ I<sup>2</sup>, and it hence appears that the values of the two invariants may be written

I\*=(I, 18J, 3I<sup>2</sup>
$$\bigvee$$
U',  $\frac{2}{3}\Theta'$ )<sup>2</sup>,  
J\*=(J, I<sup>2</sup>, 9IJ, -I<sup>3</sup>+54J<sup>2</sup> $\bigvee$ U',  $\frac{2}{3}\Theta'$ )<sup>3</sup>.

But we have (see Table No. 72 in my "Seventh Memoir on Quantics" †)

$$\widetilde{\mathbf{I}}(\alpha \mathbf{U} + 6\beta \mathbf{H}) = (\mathbf{I}, 18\mathbf{J}, 3\mathbf{I})(\alpha, \beta)^2$$
  
 $\widetilde{\mathbf{J}}(\alpha \mathbf{U} + 6\beta \mathbf{H}) = (\mathbf{J}, \mathbf{I}^2, 9\mathbf{I}, -\mathbf{I}^3 + 54\mathbf{J}^2)(\alpha, \beta)^3;$ 

so that, writing  $\alpha = U'$ ,  $\beta = \frac{2}{3}\Theta'$ , we have

$$I*=\widetilde{I}(U'U+4\Theta'H),$$
 $J*=\widetilde{J}(U'U+4\Theta'H);$ 

or the function  $(1, 0, \mathbb{C}, \mathbb{B}, \mathbb{C}(y, 1)^4)$  obtained from Tschirnhausen's transformation of the equation U=0 has the same invariants with the function  $U'U+4\Theta'H$ ; or, what is the same thing, the equation  $(1, 0, \mathbb{C}, \mathbb{B}, \mathbb{C}(y, 1^4)=0)$  is a mere linear transformation of the equation  $U'U+4\Theta H=0$ ; which is the above-mentioned theorem.

† Philosophical Transactions, vol. cli. (1861), pp. 277-292.